

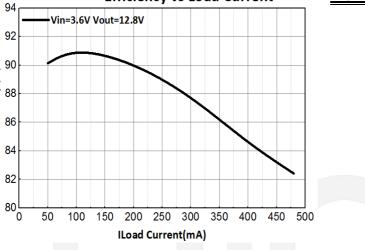
High Efficiency 1MHz, 2.3A Step Up Regulator

Features

- Wide input range:
 2.3-25V bias input, 25V Vout max
- 1MHz switching frequency
- Minimum on time: 100ns typical
- Minimum off time: 100ns typical
- Low R_{DS(ON)}: 0.15Ω
- RoHS Compliant and Halogen Free
- Accurate Reference: 0.6V_{REF}
- Compact package: SOT23-6

Applications

WLED Drivers


Efficiency (%)

 Networking cards powered from PCI or PCI-express slots

Descriptions

DIO6328E is a fixed frequency peak current mode asynchronous boost converter. Requires an external Schottky diode. DIO6328E works in light load mode when the load is light, and its quiescent current is about 100μ A. The $150m\Omega$ R_{DS(ON)} of the integrated NMOS ensures the high efficiency in all load conditions. Input voltage range is 2.3V~25V. Internal operating frequency is set to 1.0MHz.

Typical Application

Efficiency vs Load Current

Vout Vin C_{IN} 5 COUT IN LX 6 NC ON/OFF EN FB GND R₁ R_2 R₃ 1M

Ordering Information

Order Part Number	Top Marking		TA	Package	
DIO6328EST6	YWEJ	Green	-40 to 85°C	SOT23-6	Tape & Reel, 3000

Pin Assignment

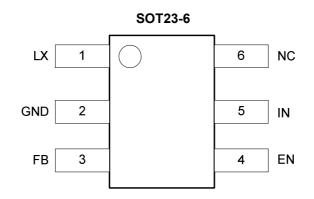


Figure 1 Top View

Pin Descriptions

Name	Description		
LX	Inductor node. Connect an inductor between IN pin and LX pin.		
GND	Ground pin.		
FB	Feedback pin. Connect a resistor R1 between VOUT and FB, and a resistor R2 between FB and GND to program the output voltage: $V_{OUT} = 0.6V * (R1/R2 + 1)$.		
EN	Enable control. High to turn on the part. Don't leave it floated.		
IN	Input pin. Decouple this pin to GND pin with 1µF ceramic cap.		
NC	No connected.		

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter		Rating	Unit	
IN, EN		28	V	
LX		28	V	
All other pins		6	V	
Power Dissipation, P_D		0.4	W	
Deckage Thermal Decistence	θ _{JA}	250	°C/W	
Package Thermal Resistance	θ _{JC}	130	°C/W	
Junction Temperature Range		150	°C	
Lead Temperature		260	°C	
Storage Temperature Range		-65 to 150	°C	
ESD	НВМ	2	kV	

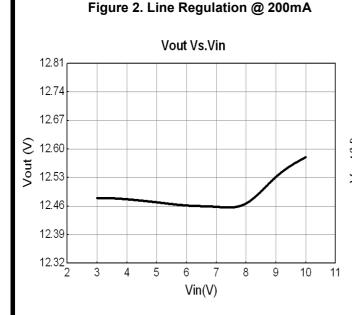
Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not Recommend exceeding them or designing to Absolute Maximum Ratings.

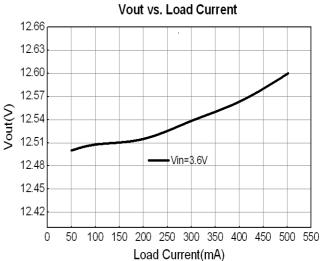
Parameter	Rating	Unit
IN,LX	2.3 to 25	V
All other pins	0 to 5.5	V
Junction Temperature Range	-40 to 125	°C
Ambient Temperature Range	-40 to 85	°C

Electrical Characteristics

Typical value: V_{IN} =5V, V_{OUT} =12V, I_{OUT} =100mA, T_A =25°C, unless otherwise specified.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ιq	Quiescent Current	FB=0.66V		100		μΑ
I _{SHDN}	Shutdown Current	EN=0		1	5	μA
R _{DS(ON)}	Low Side Main FET RON			150		mΩ
I _{LIM}	Main FET Current Limit		2.3		2.9	А
F _{sw}	Switching Frequency		0.8	1	1.2	MHz
V _{REF}	Feedback Reference Voltage		0.588	0.6	0.612	V
OVP	OUT OVP		26			V
T _{SD}	Thermal Shutdown Temperature			150		°C
V _{ENH}	EN Rising Threshold		1.4			V
V _{ENL}	EN Falling Threshold				0.4	V
I _{EN}	EN Pin Input Current		0		100	nA

Specifications subject to change without notice.



Typical Performance Characteristics

All typical value are at Vin=3.6V, Vout=12V, L=10uH, Cout=2*10uF, T_A=25°C, unless otherwise specified.

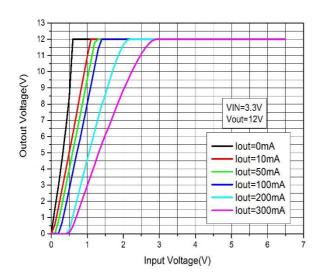


Figure 3. Load Regulation

Figure 4. Output voltage VS Input voltage

Figure 5. Phase Margin (Vin=5V Load=100mA)

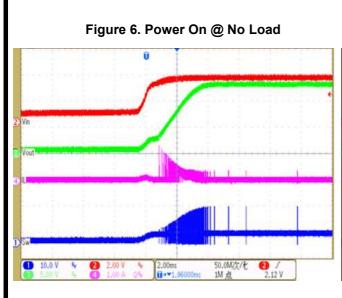


Figure 8. Enable Start Up @ Load=0.45A

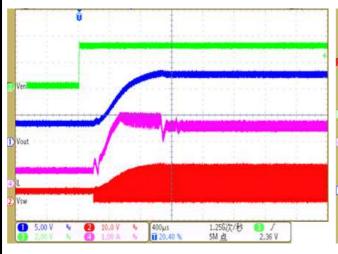
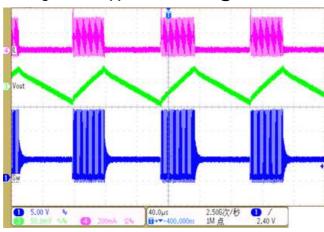
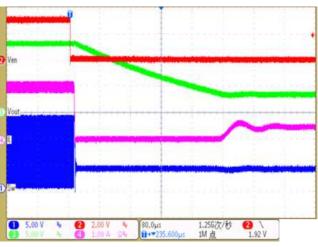
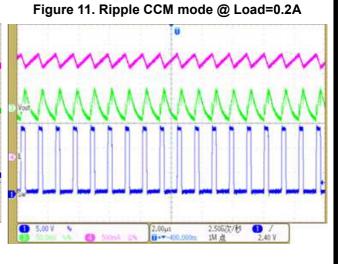
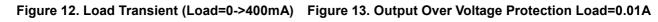
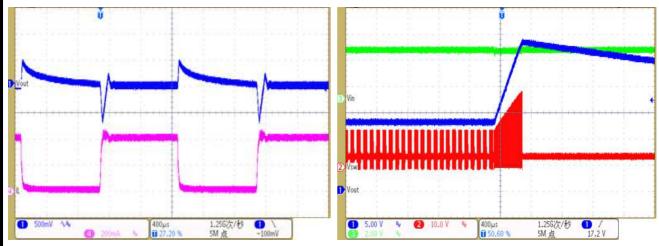


Figure 10. Ripple Burst mode @ Load=0.03A




Figure 9. Enable Shut Down @ Load=0.45A

Application Information

Because of the high integration in the DIO6328E IC, the application circuit based on this regulator IC is rather simple. Only input capacitor C_{IN} , output capacitor C_{OUT} , inductor L and feedback resistor (R_1 and R_2) need to be selected for the targeted applications specifications.

Feedback resistor dividers R₁ and R₂:

Choose R_1 and R_2 to program the proper output voltage. To minimize the power consumption under light loads, it is desirable to choose large resistance values for both R_1 and R_2 . A value of between 10k and 1M is recommended for both resistors. If R_2 =10k is chosen, then R1 can be calculated to be:

$$R_1 = \frac{(V_{OUT} - 0.6V) \times R_2}{0.6V}$$

Input capacitor C_{IN}:

The ripple current through input capacitor is calculated as:

$$I_{CIN_RMS} = \frac{V_{IN} \bullet (V_{OUT} - V_{IN})}{2\sqrt{3} \bullet L \bullet F_{SW} \bullet V_{OUT}}$$

To minimize the potential noise problem, place a typical X7R or better grade ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by C_{IN} , and IN/GND pins.

Output capacitor COUT:

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For the best performance, it is recommended to use X7R or better grade ceramic capacitor with 25V rating and greater than 10μ F capacitance.

Output inductor L:

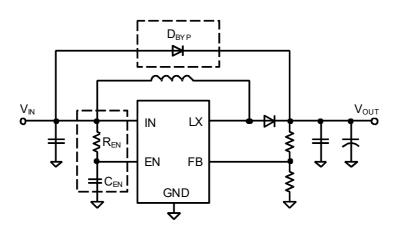
There are several considerations in choosing this inductor.

1. Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of average input current. The inductance is calculated as:

$$L = \left(\frac{V_{IN}}{V_{OUT}}\right)^2 \frac{(V_{OUT} - V_{IN})}{F_{SW} \times I_{OUT}, MAX \times 40\%}$$

Where F_{SW} is the switching frequency and I_{OUT,MAX} is the maximum load current.

The DIO6328E regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.


2. The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SAT, MIN} > \left(\frac{V_{OUT}}{V_{IN}}\right) \times I_{OUT, MAX} + \left(\frac{V_{IN}}{V_{OUT}}\right)^2 \frac{(V_{OUT} - V_{IN})}{2 \times F_{SW} \times L}$$

3. The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<50mohm to achieve a good overall efficiency.

Applications with Large Bulk Capacitance

In applications with large bulk capacitance on the output, a very high inrush current can be seen flow into the IC and cause any unexpected damage, a Zener diode connected from power input to the output or an RC delay circuit added on EN pin of the IC can be used. Refer to the circuit below.

Layout Design:

The layout design of DIO6328E regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C_{IN} , L, R_1 and R_2 .

- 1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
- 2) C_{IN} must be close to pins IN and GND. The loop area formed by C_{IN} and GND must be minimized.

- 3) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
- 4) The components R₁ and R₂, and the trace connecting to the FB pin must NOT be adjacent to the LX net on the PCB layout to avoid the noise problem.
- 5) If the system chip interfacing with the EN pin has a high impedance state at shutdown mode and the IN pin is connected directly to a power source such as a Li-Ion battery, it is desirable to add a pull down 1Mohm resistor between the EN and GND pins to prevent the noise from falsely turning on the regulator at shutdown mode.

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to <u>http://www.dioo.com</u> for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.